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Abstract. The correspondence between a contact symmetry of a second-order PDE 8 and 
a point symmetly of the equivalent first order system 9 i s  used to determine a class of 
solutions for % which may not always be invariant under contact transformation. We name 
these solutionspseudo-inuarianl because they are determined from a point symmetry of 9 
via a reduction method. Invariant solutions under the related contact transformation are 
included in the family of pseudo-inoariant solutions. 

1. Introduction 

The application of Lie group theory to obtain exact analytical solutions (the so-called 
inuariant solutions) of a partial differential equation (PDE) % is widely known (Bluman 
and Kumei 1989, Olver 1986). A group of point transformations (i.e. a group with 
infinitesimal generators depending only on the variables and the unknown function) 
can be used to reduce the number of variables of % by means of a well-defined 
reduction algorithm. In particular, if % is a PDE in two variables, in such a way we 
obtain an ordinary differential equation. 

In the following we will narrow our attention to the PDE of the second order in two 
variables. 

If we consider more general transformations as the Lie-Backlund (LB) (i.e. with 
infinitesimal generators which depend also on the derivatives of the unknown 
function) only in a few particular cases can we obtain the invariant solutions using a 
reduction procedure. This is possible, for example, for evolution equations, or in the 
case of LB transformation of the first order (i.e. with infinitesimal generators which 
depend on the first derivatives), by using the characteristic system associated with the 
invariant surface conditions which is again a first order PDE, but no longer quasilinear 
(Bluman and Kumei 1989). 
As is well known, first-order LB transformations are equivalent to contact transfor- 

mations. For the PDE of the second order they are also equivalent to the point 
symmetries of the Y system generated from % by introducing the first derivatives of 
the unknown function as new auxiliary unknowns. 

The aim of this paper is to show that the point symmetries of Y can be used to 
obtain not only the solutions of 53 invariant under the corresponding contact symme- 
tries, but also a wider class of solutions which are not necessarily invariant. We will 
call this class of solutions pseudo-inuariant solutions since they can be obtained by a 
reduction method as the invariant solutions. 
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We will call 9* the family of the solutions of the invariant surfaces conditions of 
the point symmetries of Y and 3; the family of the solutions of the invariant surface 
condition of the corresponding con*! symmetry of %. The family %* is larger than 
the family 9. This is due to the fact that in 9* we do not link the auxiliary unknowns 
to the principal unknown function. For this reason, it is possible to find solutions of '& 
in 3;* which are not enclosed in 3;. ~ 

The algorithm to find pseudo-invariant solutions is well defined. Once we know 
the 3;* family, the direct introduction of the unknown function and its derivatives in % 
generates a relation between the similarity variable and the similarity functions where 
one of the two old variables appearsas a parameter. By imposing that this relation be 
true for each value of the parameter, we obtain a system of ODES in the similarity 
functions. The solutions of this last system, introduced in $*, determine the pseudo- 
invariant solutions. Obviously, invariant solutions are a subclass of the pseudo- 
invariant solutions. 

Examples of pseudo-invariant solutions are given for a family of evolution 
equation and for a family of Monge-Ampere equations. 

2. Invariant and pseudo-invariant solutions 

A one-parameter Lie group of contact transformations is characterized by the 
operator 

provided that the contact conditions 
a? a t  az av ag ar 

au, au, a K ,  art, au, a ~ ,  U, - - u,=O U, - - U,= a 
are preserved. 

A contact symmetry is admitted by a second-order PDE (%) 
A(x, f, U ,  U,, ut, U,, uu' u 3  = O  (2.3) 

PPPzAIA,o=O (2.4) 

~~~ 

where A is a smooth function, iff 

where Y2 is the second extended infinitesimal operator of (2.1) (Olver 1986). 
The first-order system Y equivalent to % is 

u,=v U,= w U,-w ,=o  (2.5a) 

H(x,t, U, U, w ,  U,, U,, A , ) = O .  (2.5b) 

A point transformation, admitted by 9, defined by the infinitesimal operator 

a a a - a  . a  
&e={- +?- f i j --+ I$ --+ V - 

ax at a~ au a w  

where the infinitesimal generators 6, f, q ,  4 on $. depend on x, 1, U ,  U ,  w, is a point 
symmetry of 9 iff 

where 9, is the first extended infinitesimal operator of (2.6). 
@,sls="=o. (2.7) 
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The operator applied to (2.5a) and (2.5b), gives the following relations 

qW = U& + w i ,  

6 =@.:+@"U - u& i &u) - w(iz i iu U )  

$I = @,i @,w - U(.$ i &, w) - w ( i t +  iu w). 

%(U,- wx)Is~o'o. 

9, = U& + nt", (2.8) 

(2.9) 
(2.10) 

From (2.8). by derivation, we have &=io then 

The equivalence between (2.1), (2.2) and (2,6), (2.8) is obvious. and (2.9) and (2.10) 
are the first extensions of I]. For these reasons we have the equivalence between (2.4) 
and 

@lA/s=o=o 
and also a one-to-one correspondence between the contact symmetries of % and the 
point symmetries of Y (Olver 1979). 

In the following, we will consider only proper contact symmetries, i.e. symmetries 
which are not equivalent to the % point symmetries. 

The solutions of % invariant under a contact symmetry are the solutions of % which 
verify the invariant surface condition 

F ( X , ~ , ~ . ~ , . ~ , ) ~ ~ ( X , ~ , U , U ~ . U , ) U ~ + ~ ( ~ , ~ , U , U ~ , U , ) U , - I ] ( X , ~ , U , U , , ~ , ) = O  (2.11) 
which is a non-quasilinear first-order PDE with characteristic system 

(2.12) 
du, - -- - du dux 

Fux Fu, uzFuZ+u,Fu, Fz+Fnux Ft+Fuut. 
=-  

du dt _=_= 

Every solution of (2.12). verifying (2.11), is a characteristic strip to which a character- 
istic curve is associated. 

The characteristic strips are then defined by F=O and by three integrals of (2.12) 

hdx,  t ,  U ,  U,, U 3  =Y, i = O ,  1,2 (2.13) 

with a(F,  h l ,  h2, h,) /d(u,  U,, U,) of rank 3 (Courant and Hilbert 1962). 
Every solution of (2.11) is a one-parameter family of characteristic curves. Let 

yo= 5 be the parameter (similarity variable) and solving for U ,  U,, and U ,  the F=O and 
the remaining (2.13). where we have set y, =K,(C) and y2=K2(C),  we get 

(2.14) U = W X ,  I ,  5. K,(C). Kz(C)) 
Y=u~(x, t ,5.K,(1;) .K,( j ) )  (2.15) 

ut= U&, f ,  5, Kl(C)> K d t ) )  
G(x, f ,  L Kl(C). KdC)) =o. 

(2.16) 

(2.17) 

Equation (2.14), writh defined implicitly by (2.17) as a function of x and t, is the 
%-family of solutions of (2.11). The invariant solutions of '& under the contact trans- 
formation are the functions in % solutions of (2.3).. 

Related to every contact symmetry (2.1) of '%, we can define the point symmetry of 
Y with invariant surface conditions 

t u r  t T u , -  4 = 0 in; t f w , -  $=o (2.18) l u x  + ?U,- Q = o 
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and characteristic system 

E Pucci and G Sacco&ndi 

dx dt du do dw 
*=_: (2.19) 

f 4 @ v j .  

We remark that in (2.18) and (2.19) there is no link between U, U and w. 
The solutions of the equations (2.19) are defined by four integrals 

k;(x,  t ,  U ,  U, W) =c, i=O,1,2,3 (2.20) 

P e - b  + 9w- 4 = 0 (2.21) 
where a@,,, k,, k,, k3)/8(u, U, w) is of rank 3. The relation 

in an invariant relation (Levi Civita 1906) for the differential system (2.19); in fact by 
taking into account ( 2 4 ,  (2.9) and (2.10), we have 

It is possible to obtain (2.21) from (2.11) via the formal substitution ur+ U and ut+w. 
Then, when (2.11) is verified, (2.12) is only formally different from (2.19) and this 
means that the family of the characteristic strips coincides with the family of the 
solutions of (2.19) that satisfies (2.h).  

&P=(q.-$u-r,w)P. I (2.22) 

This last family is defined by P= 0 and by 

U X ,  f ,  U ,  U, w) = Y E  i = O ,  1,2 
obtained from (2.13) via the formal substitution (u,+u, u,+w). 

The functions U, U and w solutiqns of (2.18) can be obtained from (2.20) as a one- 
parameter family of characteristic curves. Choosing co=z as similarity variable and 
c,= H,(z)  as similarity functions, if we solve for U ,  U and w the remaining relations in 
(2.20), we obtain the solution of (2119) as 

u=(J(x,f, Z ~ H I ( Z ) , ~ ~ Z ) > ~ ~ ( Z ) )  (2.23) 
U =V(x, f ,  z, H d z ) ,  &), H3(z)) (2.24) 
w=w(x, f , Z ,  H I ( ~ ) , $ ? ( Z ) ? H ~ ( Z ) )  (2.25) 

r(x. t ,  2, H,(z) ,  H , ( z ) ~  H3(2)) =o. (2.26) 
Equation (2.23), where z is implicitly defined by (2.26), are the %* family. The 

invariant solutions of Y arc the functions (2.23), . . . , (2.26) that verify the Y system. 
By substitution in Y of thesq functions we obtain a system Z of ordinary 

differential equations in the H,(z )  unknown functions. Introducing the solution of Z in 
(2.23) we obtain all the invariant solutions of % under the contact transformation, 
since the relation (2.21) is verified. 

The pseudo-invariant solutions of % are the solutions of % in %*; they do not 
always satisfy (2.21). The direct substitution of (2.23), where z is defined by (2.26). in 
(2.3) generates a differential relation between the H,(z) functions where one of the 
two variablesx and t must be considered as a parameter. Indeed it is always possible to 
solve (2.26) for x or f .  

By imposing that the above relation holds true for every value of the parameter. 
we obtain a differential system Z*:where the unknown functions are always H , ( z ) .  
Every solution of Z*, introduced in'(2.23), gives rise to a pseudo-invariant solution of 
(2.3). The solutions of Z* which are also solutions of Z are obviously the invariant 
solutions. 

In the next section, we will give non-trivial examples of pseudo-invariant solutions. 
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3. Examples 

We consider the equation 

u,(u, - a) - u;~= o (3.1) 

u,=v u,=w U,= W, w,(v, -a) - = o (3.2) 

t= U 2 = I t  t j = I U + -  4 =Iv $=o. (3.3) 

vu, + Amr- ?.U - U212 = 0 

vu II + Itu, - L v = 0 
uw, + Itw, = 0 

I t  
-= z w = H,(z )  L -u=  H ~ ( z )  

where I is an arbitrary parameter. The equivalent 9 system 

is invariant under the point symmetry with infinitesimal generators 

U2 

2 

The invariant surface conditions are 

(3 .4)  

and so the integrals of the corresponding characteristic system (2.19) are 

u x  
H d z ) .  (3.5) _ _ _ =  

U 

Then the solutions of (3 .4)  are 

= (AX - H d z ) )  6 + K ( 4 )  o = - H ~ ( z )  w= H,(z )  (3.6) 

where z is defined by 

I t  - z(AX - H ~ ( z ) )  =O. 
The substitution of (3.6) in 9 gives 

z H ;  - H ;  = O  2(IH3 - zH1) + H2 = 0 
where H:= d H i / d r .  In doing so we obtain 

(3 .7)  

(3.8a) 

(3.8b) 

where H2(z )  is an arbitrary function andf, an arbitrary constant. Then the invariant 
solutions of Y are 

U =L 22 (ax+ H 2 + 2 z  1; dz +2f0z )  

Z 
u = k - H ,  

(3.9) 

(3.10) 

where z is defined by (3.7).  
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The (3.9) are the solutions of ‘El, invariant under the contact symmetry, defined by 

5=u, t = L t  ?=,?U+- (3.11) 
~ 

U: 

2 ! 

with invariant surface condition 

(3.12) 

Now we will find the pseudo-invariant solutions of ‘El. By substitution of (3.6), in 

U :  Iru,+--du= 0. 2 

(3.1) we obtain that the system Z*, in this case, is given by the single equation 

H ; ( U r H ;  - WH,- H i z  - H2) =o. 
~ 

(a) H2= k (k arbitrary constant). 
Two cases are possible: 

Then we have 

(3.13) 

where H3 is an arbitrary function. 

Then H3 is defined by (3.86) and the function U is the same as (3.9). 
The pseudo-invariant solutions in the ease of (a) are invariant under (3.11) iff 

HS=l r / ( l r -  k)- k / U ;  in the case ‘(b) all the pseudo-invariant solutions are also 
invariant solutions. 

For 1=0 the (3.1) is the MongelAmpbre equation. The invariant solutions of Yo 
(the systemobtainedfrom (3.2) whenL=O) areu=H(r), v=O.  w=H’(r). where His  
an arbitrary function. On the other hand, the pseudo-invariant solutions ore defined 

i 
0. (b) UZH; - UHS - H ; z  - H. 

by 
kx 
2 U = -  t H(r) 

where His  an arbitrary function (more on contact symmetries for the Monge-Ampere 
equation can be found in Ibragimov 1985). 

We consider the family of evolution equations 

(3.14) 

where y( t )  and R((l/u,) - (ylu,)) are smooth arbitrary functions. 
In this case, the equivalent 9 system 

(3.15) 

is invariant under the point symmetry with infinitesimal generators 

1 

0 
t=- ~ r = O  = 1 + y x -  In(u) @=Y * = y’x. 
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From the characteristic system we obtain t as a similarity variable and U,  U and w 
defined by 

1 

Y 
U = -  (HI + (Hz+ 1) exp(yx - Hz)) 

U = exp(yx - Hz) 

(3.16~) 

(3.166) 

(3.16~) 

where now HI, Hz and H3 are arbitrary functions of t .  
The system 2 is 

YH: - Y’HI - y2R(0) = 0 H2=0 H3 + yR(0) = 0 
then HI = ytR(0) + coy, H2 = 0, H3 = - yR(0) where co is an arbitrary constant. 

The invariant solutions of 8 under the correspondent contact symmetries are 
1 
Y 

U =- (ytR(0) + coy + exp(yx)). (3.17) 

The pseudo-invariant solutions are obtained considering the relation found by 
direct introduction of (3.16~) in (3.14). Requiring that this relation holds for every 
value of the x parameter, we have the Z* system of equations 

YH; -y‘Hi -y2R(O) = 0 Hi=O. 
Then the pseudo-invariant solutions are 

1 
Y 

U = - W ( 0 )  + coy + c1 exp(yx)) 

where cI is an arbitrary constant. 

4. Concluding remarks 

We have examined thoroughly the possibility to compute exact solutions of the 
equation % starting from the point symmetries (PS) of the system 9 corresponding to 
contact symmetries of %. The analysis of the characteristic systems (2.12) and (2.19) 
has suggested the main result: the solutions of 8 with functional form defined by the 
the invariant surface conditions of PS, i.e. the pseudo-invariant, are a wide class than 
the ones which satisfy (2.11), i.e. the invariant solutions. Then more exact solutions 
by reduction can be found in such a way. 

A priori there is no relationship between this method and other methods of 
reduction related to group theory, as non-classical and weak symmetries (Bluman and 
Cole 1969, Pucci and Saccomandi 1992), or to direct methods (Clarkson and Kruskal 
1989, Rubel 1991, Galaktionov 1990). 
On the other hand, after the determination of the pseudo-invariant solutions, it is 

easy to check if, by chance, these can be found also via other procedures. For example 
the solutions (3.13) of the equation (3.1) are invariant under the non-classical 
symmetry with generators 

k - k  (Ax - k)Z+ WU 
r l =  ut E = -  a = l  Lt 
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Then, by using the results in Pucci (1992), we know that the solutions (3.13) can also 
be obtained by the method of Clarkson and Kruskal; moreover, when H,=@(r)q(x), 
it is easy to obtain them via the nonlinear separation method (Galaktionov 1990). 
However, generally, nothing can be said on the relationship between our method and 
these other procedures. 

We point out that to find the pseudo-invariant solutions of % we need only to 
compute the PS of Y .  which are characterized by a linear system of determining 
equations; this is no more the case for non-classical or weak symmetries that, also in 
the simplest cases, are characterized by highly nonlinear systems. Nonlinear equations 
must be solved also when direct methods are applied and moreover such methods are 
not entirely algorithmic. 

A procedure to obtain new exact solutions by reduction. which is similar to the one 
of this paper, has been successfully applied to invariant PDE under potential symme- 
tries (Pucci and Saccomandi 1993). 

E Pucci and G Saccomandi 
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