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Abstract. The correspondence between a contact symmetry of a second-order PDE € and
a point symmetry of the equivalent first order system & is used to determine a class of
solutions for € which may not always be invariant under contact transformation. We name
these solutions psewdo-invariant because they are determined from a point symmetry of ¥
via a reduction method. Invariant solutions under the related contact transformation are
included in the family of pseudo-invarignt solutions.

1. Introduction

The application of Lie group theory to obtain exact analytical solutions (the so-called
invariant solutions) of a partial differential equation (pDE) € is widely known (Bluman
and Kumei 1989, Olver 1986). A group of point transformations (i.e. a group with
infinitesimal generators depending only on the variables and the unknown function)
can be used to reduce the number of variables of € by means of a well-defined
reduction algorithm. In particular, if € is a PDE in two variables, in such a way we
obtain an ordinary differential equation.

1n the following we will narrow our attention to the pp& of the second order in two
variables.

If we consider more general transformations as the Lie-Bicklund (L) (i.e. with
infinitesimal generators which depend also on the derivatives of the unknown
function) only in a few particular cases can we obtain the invariant solutions using a
reduction procedure. This is possible, for example, for evolution equations, or in the
case of LB transformation of the first order (i.e. with infinitesimal generators which
depend on the first derivatives), by using the characteristic system associated with the
invariant surface conditions which is again a first order ppE, but no longer quasilinear
(Bluman and Kumei 1989).

As is well known, first-order LB transformations are equivalent to contact transfor-
mations. For the ppe of the second order they are also equivalent to the point
symmetries of the & system generated from € by introducing the first derivatives of
the unknown function as new auxiliary unknowns.

The aim of this paper is to show that the point symmetries of % can be used to
obtain not only the solutions of ¥ invariant under the corresponding contact symme-
tries, but also a wider class of solutions which are not necessarily invariant. We will
call this class of solutions pseudo-invariant solutions since they can be obtained by a
reduction method as the invariant solutions.
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We will call F* the family of the solutions of the invariant surfaces conditions of
the point symmetries of ¥ and & the family of the solutions of the invariant surface
condition of the corresponding contact symmetry of €. The family #* is larger than
the family %. This is due to the fact that in * we do not link the auxiliary unknowns
to the principal unknown function. For this reason, it is possible to find solutions of €
in %* which are not enclosed in #.

The algorithm to find pseudo-invariant solutions is well defined. Once we know
the F* family, the direct introduction of the unknown function and its derivatives in ¢
generates a relation between the snm1lanty variable and the mmﬂar:ty functions where
one of the two old variables appears as a parameter. By imposing that this relation be
true for each value of the parameter, we obtain a system of oDEs in the similarity
functions. The solutions of this last system, introduced in F*, determine the pseudo-
invariant solutions. Obviously, invariant solutions are a subclass of the pseudo-
invariant solutions. |

Examples of pseudo-invariant solutions are given for a family of evolution
equation and for a family of Monge—Ampére equations.

2. Invariant and pseudo-invariant solutions

A one-parameter Lie group of contact transformations is characterized by the
operator

9 9
X=E(x,t,u,u, ut) +1'(x t,u, ux,u,) +?](x L, b, Uy, U :)“‘“’ (2.1)

provided that the contact condltzons
an 0& ar ‘ an 65 ot
aux—autux-a—uru,—o - —u,-O (2.2)

o, Bu, ou,
are preserved.
A contact symmetry is admitted by a second-order ppE (%)

A(x’ r‘) u’ ul’ ul’ uj’.l" uxlﬂ‘ u(f)=0 (2-3)
where A is a smooth function, iff —
PrAlam0=0 (2.4)

where P, is the second extended infinitesimal operator of (2.1) (Olver 1986).
The first-order system ¥ equivalent to € is

=0 u=w  0,—w,=0 (2.5a)
Alx,tu, v, w, 05, 0, wj,) =0. (2.3b)
A point transformation, admitted by &, defined by the infinitesimal operator
i, i 6 . 0
&= 5 PPy +:;ra—+¢ W (2.6

where the infinitesimal generators &, 7, 74, ¢ on ¥, depend on x, ¢, 4, v, w, is a point
symmetry of & iff

@ISL”EU:O' : (2.7)
where @, is the first extended infinitesimal operator of (2.6).
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The operator %,, applied to (2.5¢) and (2.5b), gives the following relations

ﬁw = Uéw + wa ﬁu = Uéu + u’fv, (2.8)
$=n+ho—v +Ev)—wit +1,0) 2.9)
I,Er=ﬁ,+ﬁuw—v($,+£uw)—w(f,+fuw), (2.10)

From (2.8), by derivation, we have £,= 7, then
@1(0;“ wx) |S=D"=—0‘

The equivalence between (2.1}, (2.2) and (2,6), (2.8) is obvious, and (2.9) and (2.10)
are the first extensions of . For these reasons we have the equivalence between (2.4)
and

@IAIS=0=O

and also a one-to-one correspondence between the contact symmetries of € and the
point symmetries of ¥ (Olver 1979).

In the following, we will consider only proper contact symmetries, i.e. symmetries
which are not equivalent to the % point symmetries.

The solutions of € invariant under a contact symmetry are the solutions of € which
verify the invariant surface condition

Flx,t,u v wy=E(x, t u, u, uu +o(x, 6w, u, wu—nix, 6, u,u,u)=0 (2.11)
which is a non-quasilinear first-order pDE with characteristic system
dx dr du du, du,

F. F. uF, +uF, F+Fu  F+Fu 2.12)

Every solution of (2.12), verifying (2.11}, is a characteristic strip to which a character-
istic curve is associated,
The characteristic strips are then defined by F=0 and by three integrals of (2.12)

Rix, t,u, U, 1) =7, i=0,1,2 (2.13)

with 8(F, hy, hy, h3)/3(u, u,, u,) of rank 3 (Courant and Hilbert 1962).

Every solution of (2.11) is a one-parameter family of characteristic curves. Let
yo=_ be the parameter (similarity variable) and solving for u, u,, and &, the F=0 and
the remaining {2.13), where we have set y,=K|(£} and y,= Ky(£), we get

u=U(x, 1§ K(E). KA0)) (2.14)
w.=U(x, 1, T, Ky(8), KiAS)) (2.15)
u=Uy(x,1, 8, Ki(L). Ky(8)) (2.16)
G(x, 1, §, Ky(£), K(£)=0. (2.17)

Equation (2.14), with ¢ defined implicitly by (2.17) as a function of x and ¢, is the
F-family of solutions of (2.11), The invanant solutions of § under the contact trans-
formation are the functions in % solutions of (2.3)..

Related to every contact symmetry (2.1) of €, we can define the point symmetry of
& with invariant surface conditions

Eu, +tu,~%=0 fv,t,~¢=0 Ew,+tw,— =0 (2.18)



180 E Pucci and G Saccomandi

and characteristic system
dx_dt_clu_dv _dw 2.19)
E e h ¢ 9 |

We remark that in (2.18) and (2.19) there is no link between u, v and w.
The solutions of the equations (2.19) are defined by four integrals

kix,tu,v,w)y=c, i=0,1,2,3 (2.20)
where 3(k;, ki, k;, k3)/0(u, v, w) is of rank 3. The relation
F=bo+iw—5=0 (2.21)

in an invariant relation (Levi Civita 1906) for the differential system (2.19); in fact by
taking into account (2.8), (2.9) and (2.10), we have

@F= (ﬁu_éuv—fuw)ﬁlz (22‘2)

It is possible to obtain (2.21) from (2.11) via the formal substitution u, — v and u, —w.
Then, when (2.11) is verified, (2.12) is only formally different from (2.19) and this
means that the family of the characteristic strips coincides with the family of the
solutions of {2.19) that satisfies (2. 21)

This last family is defined by F=0 and by

ﬁ,(x,t,u,u,w)u—-y, i=0,1,2

obtained from (2.13) via the formal substitution (i, — v, u,—w).

The functions u, v and w solutions of (2.18) can be obtained from (2.20) as a one-
parameter family of characteristic curves. Choosing ¢, =z as similarity variable and
¢,= H,(z) as similarity functions, if we solve for u, v and w the remaining relations in
(2.20), we obtain the solution of (2.19) as

u=U(x,1, 2, Hy(2), Hyz), H{2)) (2.23)

v=V(x,1,z, H(z), Hiz). Hy(z)) (2.24)

w=W(x,t, z, H(z), Hz(z), Hi(z)) (2.25)

T(x.t, z, H{z), HAz), Hy(z)) =0. (2.26)

Equation (2.23), where z is implicitly defined by (2.26), are the F* family. The
invariant solutions of & are the functions (2.23), .. ., (2.26) that verify the & system.

By substitution in ¥ of thesg functions we obtain a system Z of ordinary
differential equations in the H,(z) unknown functions. Introducing the solution of X in
{2.23) we obtain all the invariant solutions of € under the contact transformation,
since the relation (2.21) is verified.

The pseudo-invariant solutions of € are the solutions of % in %*; they do not
always satisfy (2.21). The direct substitution of (2.23), where z is defined by (2.26), in
(2.3) generates a differential relation between the H (2) functions where one of the
two variables x and ¢ must be considered as a parameter. Indeed it is always possible to
solve (2.26) for x or ¢.

By imposing that the above relation holds true for every value of the parameter,
we obtain a differential system I* where the unknown functions are always H,(z).
Every solution of £*, introduced in (2.23), gives rise to a pseudo-invariant solution of
(2.3). The solutions of Z* which are also solutions of Z are obviously the invariant
solutions. ‘

In the next section, we will give non-trivial examples of pseudo-invariant solutions.
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3. Examples

We consider the equation

Uy = A) — 15 =0 (3.1)
where 1 is an arbitrary parameter. The equivalent & system
u,=v u=w v,=w, w,(v,—A)—vi=0 (3.2)

is invariant under the point symmetry with infinitesimal generators
E=v t=A A=Au+— o=Av ¥ =0. (3.3)

The invariant surface conditions are
vu, + Atu,— Au—v*2=0
vo, +Aw,—Aiv=0 (3.4)
ow,+ Aw, =0
and so the integrals of the corresponding characteristic system (2.19) are
At u x
ik w=H(z) Ax—v=Hyz) ;—§=H3(z), (3.5)

Then the solutions of (3.4) are
u=(dx— Hy(2)) G+H3(z)) v=Ax— Hy(2) w=H(z) (3.6)

where z is defined by

At—z(Ax — HA(2))=0. (3.7
The substitution of (3.6) in ¥ gives

zH{—H;=0 200, —zH)+ H,=0

where H]=dH,/dz. In doing so we obtain

H, H,

H1=7+ ?dZ'l'fo (3.8a)
1 H,

H3=ﬂ Hy+2z ?dz+2foz (3.80)

where Hy(z) is an arbitrary function and f, an arbitrary constant. Then the invariant
solutions of ¥ are

t H,
U=y~ Ax+ Ho+ 2z ?dz+2fnz) (3.9
H, (H,
v=Aix—H, w=?+ —z-i-dz+fg (3.10)

where z is defined by (3.7).
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The (3.9) are the solutions of €, finvariant under the contact symmetry, defined by

s

; u;
E=uy, T=kt q=1u+5 (3.11)
with invariant surface condition
u? ‘
;Lm,+5‘~—au=0. | (3.12)

Now we will find the pseudo-inviariant solutions of €. By substitution of (3.6); in
(3.1) we obtain that the system =%, Iin this case, is given by the single equation

Hi(2AzH ' — 2AH, — Hg;z ~H,)=0.
Two cases are possible: |

{a) H,=k (k arbitrary constant)'.
Then we have '

re— | pf o) 4 3.13
e —_— + — .
where H; is an arbitrary function.

(b) 2AzH3—20H,— Hz — Hy=90.

Then H, is defined by (3.8b) and thﬁ; function # is the same as (3.9).

The pseudo-invariant solutions in the case of (a) are invariant under (3.11) iff
Hy=At/(Ax — k) — k/21; in the case (b} all the pseudo-invariant solutions are also
invariant solutions. \

For A=0 the (3.1) is the Monge—Ampére equation. The invariant solutions of ¥,
(the system obtained from (3.2) when 4= 0) are u=H(/), v=0, w=H'(r). where His
an arbitrary function. On the other Ihand, the pseudo-invariant solutions are defined
by

kx
u=?+H(r)

where H is an arbitrary function (more on contact symmetries for the Monge~Ampére
equation can be found in Ibragimov 1985).
We consider the family of evolution equations

i 1 7
u,=?(yx—l)ux+R(u———) (3.14)

¥ ut\'l

where y() and R((1/u,) = (y/u,,)) are smooth arbitrary functions.
In this case, the equivalent & system

14 1y
u,=v u=w v =W, w=17(}fx—l)u+R P (3.15)

X

is invariant under the point symmetry with infinitesimal generators

4

§=; - 1=0 n=1+yx—In(v) p=y Yw=y'x.
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From the characteristic system we obtain ¢ as a similarity variable and u, v and w
defined by

1

u=y (Hi+ (Hy+ 1) exp(yx — H3)) (3.164)

v=exp(yx — H) (3.166)
Hy, v

W= + e (yx—~1) exp(yx — H,) (3.16¢)

where now H,, H, and H, are arbitrary functions of ¢,
The system X is

yH{~y' H~y*R(0)=0 H,=0 H;+yR({0)=0

then H,=ytR(0} + cyy, H,=0, H;= —yR(0) where ¢, is an arbitrary constant.
The invariant solutions of % under the correspondent contact symmetries are

u =% (YER(0) + ¢y + exp(yx)). {3.17)

The pseudo-invariant solutions are obtained considering the relation found by
direct introduction of (3.16a) in (3.14). Requiring that this relation holds for every
value of the x parameter, we have the Z* system of equations

yH{—y'H,~y’R(0)=0 3=0.
Then the pseudo-invariant solutions are

1
u=2(yeR(0) + coy + crexp(yx))

where ¢, is an arbitrary constant.

4, Concluding remarks

We have examined thoroughly the possibility to compute exact solutions of the
equation € starting from the point symmetries (ps) of the system & corresponding to
contact symmetries of €. The analysis of the characteristic systems (2.12) and (2.19)
has suggested the main result; the solutions of € with functional form defined by the
the invariant surface conditions of ps, i.e. the pseudo-invariant, are a wide class than
the ones which satisfy (2.11), i.e. the invariant solutions. Then more exact solutions
by reduction can be found in such a way.

A priori there is no relationship between this method and other methods of
reduction related to group theory, as non-classical and weak symmetries (Bluman and
Cole 1969, Pucci and Saccomandi 1992}, or to direct methods {Clarkson and Kruskal
1989, Rubel 1991, Galaktionov 1990).

On the other hand, after the determination of the pseudo-invariant solutions, it is
easy to check if, by chance, these can be found also via other procedures. For example
the solutions (3.13) of the equation (3.1) are invariant under the non-classical
symmetry with generators
ix—k , (Ax— k) +2u

P— =

T g 24t
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Then, by using the results in Pucci (1992), we know that the solutions (3.13) can also
be obtained by the method of Clarkson and Kruskal; moreover, when H; = ¢{(y(x),
it is easy to obtain them via the nonlinear separation method (Galaktionov 1990).
However, generally, nothing can be said on the relationship between our method and
these other procedures.

We point out that to find the pseudo-invariant solutions of € we need only to
compute the ps of &, which are characterized by a linear system of determining
equations; this is no more the case for non-classical or weak symmetries that, also in
the simplest cases, are characterized by highly nonlinear systems. Nonlinear equations
must be solved also when direct methods are applied and moreover such methods are
not entirely algorithmic.

A procedure to obtain new exact solutions by reduction, which is similar to the one
of this paper, has been successfully applied to invariant ppE under potential symme-
tries (Pucci and Saccomandi 1993).
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